Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 9, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
Haptic devices typically rely on rigid actuators and bulky power supply systems, limiting wearability. Soft materials improve comfort, but careful distribution of stiffness is required to ground actuation forces and enable load transfer to the skin. We present Haptiknit, an approach in which soft, wearable, knit textiles with embedded pneumatic actuators enable programmable haptic display. By integrating pneumatic actuators within high- and low-stiffness machine-knit layers, each actuator can transmit 40 newtons in force with a bandwidth of 14.5 hertz. We demonstrate the concept with an adjustable sleeve for the forearm coupled to an untethered pneumatic control system that conveys a diverse array of social touch signals. We assessed the sleeve’s performance for discriminative and affective touch in a three-part user study and compared our results with those of prior electromagnetically actuated approaches. Haptiknit improves touch localization compared with vibrotactile stimulation and communicates social touch cues with fewer actuators than pneumatic textiles that do not invoke distributed stiffness. The Haptiknit sleeve resulted in similar recognition of social touch gestures compared to a voice-coil array but represented a more portable and comfortable form factor.more » « lessFree, publicly-accessible full text available December 18, 2025
-
Kiyavash, Negar; Mooij, Joris M (Ed.)
-
Abstract Highlyr-process-enhanced (RPE) stars are rare and usually metal poor ([Fe/H] < −1.0), and they mainly populate the Milky Way halo and dwarf galaxies. This study presents the discovery of a relatively bright (V= 12.72), highly RPE (r-II) star ([Eu/Fe] = +1.32, [Ba/Eu] = −0.95), LAMOST J020623.21+494127.9. This star was selected from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope medium-resolution (R∼ 7500) spectroscopic survey; follow-up high-resolution (R∼ 25,000) observations were conducted with the High Optical Resolution Spectrograph installed on the Gran Telescopio Canarias. The stellar parameters (Teff= 4130 K, = 1.52, [Fe/H] = −0.54,ξ= 1.80 km s−1) have been inferred taking into account nonlocal thermodynamic equilibrium effects. The abundances of [Ce/Fe], [Pr/Fe], and [Nd/Fe] are +0.19, +0.65, and +0.64, respectively, relatively low compared to the Solarr-process pattern normalized to Eu. This star has a high metallicity ([Fe/H] = −0.54) compared to most other highly RPE stars and has the highest measured abundance ratio of Eu to H ([Eu/H] = +0.78). It is classified as a thin-disk star based on its kinematics and does not appear to belong to any known stream or dwarf galaxy.more » « less
-
We envision programmable matters that can alter their physical properties in desirable manners based on user input or autonomous sensing. This vision motivates the pursuit of mechanical metamaterials that interact with the environment in a programmable fashion. However, this has not been systematically achieved for soft metamaterials because of the highly nonlinear deformation and underdevelopment of rational design strategies. Here, we use computational morphogenesis and multimaterial polymer 3D printing to systematically create soft metamaterials with arbitrarily programmable temperature-switchable nonlinear mechanical responses under large deformations. This is made possible by harnessing the distinct glass transition temperatures of different polymers, which, when optimally synthesized, produce local and giant stiffness changes in a controllable manner. Featuring complex geometries, the generated structures and metamaterials exhibit fundamentally different yet programmable nonlinear force-displacement relations and deformation patterns as temperature varies. The rational design and fabrication establish an objective-oriented synthesis of metamaterials with freely tunable thermally adaptive behaviors. This imbues structures and materials with environment-aware intelligence.more » « less
An official website of the United States government

Full Text Available